pds-it
['Product detail page','no']
Amazon Web Services / AWS Machine Learning & AI
The illustrations were created in cooperation between humans and artificial intelligence. They show a future in which technology is omnipresent, but people remain at the center.
AI-generated illustration

MLOps Engineering on AWS

Online
3 days
English
Download PDF
€ 1.990,-
plus VAT.
€ 2.368,10
incl. VAT.
Booking number
33846
Venue
Online
2 Events
€ 1.990,-
plus VAT.
€ 2.368,10
incl. VAT.
Booking number
33846
Venue
Online
2 Events
Become a certified
Machine Learning Engineer
This course is part of the certified Master Class "Machine Learning Engineer". If you book the entire Master Class, you save over 15 percent compared to booking this individual module.
To the Master Class
In-house training
In-house training for your Employees only - exclusive and effective.
Inquiries
In cooperation with
Could your Machine Learning (ML) workflow use some DevOps agility? MLOps Engineering on AWS will help you bring DevOps-style practices into the building, training, and deployment of ML models.
Content

ML data platform engineers, DevOps engineers, and developers/operations staff with responsibility for operationalizing ML models will learn to address the challenges associated with handoffs between data engineers, data scientists, software developers, and operations through the use of tools, automation, processes, and teamwork. By the end of the course, go from learning to doing by building an MLOps action plan for your organization.

Day 1
Module 0: Welcome

  • Course introduction

Module 1: Introduction to MLOps

  • Machine learning operations
  • Goals of MLOps
  • Communication
  • From DevOps to MLOps
  • ML workflow
  • Scope
  • MLOps view of ML workflow
  • MLOps cases

Module 2: MLOps Development

  • Intro to build, train, and evaluate machine learning models
  • MLOps security
  • Automating
  • Apache Airflow
  • Kubernetes integration for MLOps
  • Amazon SageMaker for MLOps
  • Lab: Bring your own algorithm to an MLOps pipeline
  • Demonstration: Amazon SageMaker
  • Intro to build, train, and evaluate machine learning models
  • Lab: Code and serve your ML model with AWS CodeBuild
  • Activity: MLOps Action Plan Workbook

Day 2
Module 3: MLOps Deployment

  • Introduction to deployment operations
  • Model packaging
  • Inference
  • Lab: Deploy your model to production
  • SageMaker production variants
  • Deployment strategies
  • Deploying to the edge
  • Lab: Conduct A/B testing
  • Activity: MLOps Action Plan Workbook

Day 3
Module 4: Model Monitoring and Operations

  • Lab: Troubleshoot your pipeline
  • The importance of monitoring
  • Monitoring by design
  • Lab: Monitor your ML model
  • Human-in-the-loop
  • Amazon SageMaker Model Monitor
  • Demonstration: Amazon SageMaker Pipelines, Model Monitor, model registry, and Feature
  • Store
  • Solving the Problem(s)
  • Activity: MLOps Action Plan Workbook

Module 5: Wrap-up

  • Course review
  • Activity: MLOps Action Plan Workbook
  • Wrap-up
Benefits
  • Deploying your own models in the AWS Cloud
  • Automating workflows for building, training, testing, and deploying ML models
  • The different deployment strategies for implementing ML models in production
  • Monitoring for data drift and concept drift that could affect prediction and alignment with business expectations

This course can be used as preparation for the following official AWS Certification:
AWS Certified Machine Learning - Specialty.

Instructor
Yuri Nikulin
Matthew Millward
Methods

This course includes instructor lecture, presentations, hands-on labs, demonstrations, and group exercises/discussions.

Final examination
Recommended for

This course is intended for the following job roles:

  • DevOps
  • Machine Learning & AI

We recommend that attendees of this course have the following prerequisites:

  • The Elements of Data Science (free digital course)
  • Machine Learning Terminology and Process (free digital course)

and have attended the following course (or equivalent knowlege):
The Machine Learning Pipeline on AWS.

Start dates and details

Form of learning

Learning form

1.9.2025
Online
Places free
Implementation secured
Online
Places free
Implementation secured
3.11.2025
Online
Places free
Implementation secured
Online
Places free
Implementation secured

The training is carried out in cooperation with an authorized training partner.
For the purpose of implementation, participant data will be transferred to the training partner and the training partner assumes responsibility for the processing of these data.
Please take note of the corresponding privacy policy.

Do you have questions about training?
Call us on +49 761 595 33900 or write to us at service@haufe-akademie.de or use the contact form.