Buchungs-Nr.:
36405
Lerne, wie du die ersten Schritte in der Datenanalyse meisterst, und setze komplette Datenprozesse mit Hilfe des KNIME-Tools um. Dabei erfährst du unter anderem, wie du mit Algorithmen Daten auswertest und Ergebnisse deiner Datenanalysen visualisierst.
Das erste Webinar startet mit einer detaillierten Vorstellung von Aufbau und Zielen für den Kurs. Gemeinsam wird auch ein Blick auf die ersten Lerneinheiten geworfen und persönliche Erwartungen besprochen.
Montag, 01.09.2025
11:00 Uhr - 12:00 Uhr
Das erste Webinar startet mit einer detaillierten Vorstellung von Aufbau und Zielen für den Kurs. Gemeinsam wird auch ein Blick auf die ersten Lerneinheiten geworfen und persönliche Erwartungen besprochen.
Montag, 10.11.2025
09:00 Uhr - 10:00 Uhr
Das erste Webinar startet mit einer detaillierten Vorstellung von Aufbau und Zielen für den Kurs. Gemeinsam wird auch ein Blick auf die ersten Lerneinheiten geworfen und persönliche Erwartungen besprochen.
Montag, 23.02.2026
09:00 Uhr - 10:00 Uhr
Teil 1: Business Understanding und Konzepte des Data Minings
Zu Beginn der ersten Selbstlerneinheit lernst du, Anwendungsfälle zu identifizieren und zu beschreiben, wie du Business-Probleme durch die Analyse von Daten und die Anwendung von Machine Learning lösen kannst. Danach erfährst du alles über die Grundlagen und Voraussetzungen für eigene Datenprojekte und tauchst tief in die Konzepte von Datenstrukturen und Machine Learning ein:
Teil 2: Installation und Einführung in die Arbeit mit KNIME
Nachdem du alles über die Grundlagen und Konzepte der Data Science erfahren hast, machst du als nächstes die ersten Schritte in der praktischen Anwendung. Du machst dich mit der Anwendung des Tools KNIME vertraut, eine leistungsstarke Entwicklungsplattform für das Data Mining, mit der du komplexe Datenanalyse- und Data-Science-Projekte durchführen kannst:
Teil 1: Business Understanding und Konzepte des Data Minings
Zu Beginn der ersten Selbstlerneinheit lernst du, Anwendungsfälle zu identifizieren und zu beschreiben, wie du Business-Probleme durch die Analyse von Daten und die Anwendung von Machine Learning lösen kannst. Danach erfährst du alles über die Grundlagen und Voraussetzungen für eigene Datenprojekte und tauchst tief in die Konzepte von Datenstrukturen und Machine Learning ein:
Teil 2: Installation und Einführung in die Arbeit mit KNIME
Nachdem du alles über die Grundlagen und Konzepte der Data Science erfahren hast, machst du als nächstes die ersten Schritte in der praktischen Anwendung. Du machst dich mit der Anwendung des Tools KNIME vertraut, eine leistungsstarke Entwicklungsplattform für das Data Mining, mit der du komplexe Datenanalyse- und Data-Science-Projekte durchführen kannst:
Teil 1: Business Understanding und Konzepte des Data Minings
Zu Beginn der ersten Selbstlerneinheit lernst du, Anwendungsfälle zu identifizieren und zu beschreiben, wie du Business-Probleme durch die Analyse von Daten und die Anwendung von Machine Learning lösen kannst. Danach erfährst du alles über die Grundlagen und Voraussetzungen für eigene Datenprojekte und tauchst tief in die Konzepte von Datenstrukturen und Machine Learning ein:
Teil 2: Installation und Einführung in die Arbeit mit KNIME
Nachdem du alles über die Grundlagen und Konzepte der Data Science erfahren hast, machst du als nächstes die ersten Schritte in der praktischen Anwendung. Du machst dich mit der Anwendung des Tools KNIME vertraut, eine leistungsstarke Entwicklungsplattform für das Data Mining, mit der du komplexe Datenanalyse- und Data-Science-Projekte durchführen kannst:
Im zweiten Webinar blickst du gemeinsam mit den Referent:innen auf die Inhalte der ersten Selbstlernphase.
Montag, 06.10.2025
11:00 Uhr - 12:00 Uhr
Im zweiten Webinar blickst du gemeinsam mit den Referent:innen auf die Inhalte der ersten Selbstlernphase.
Montag, 15.12.2025
09:00 Uhr - 10:00 Uhr
Im zweiten Webinar blickst du gemeinsam mit den Referent:innen auf die Inhalte der ersten Selbstlernphase.
Montag, 30.03.2026
09:00 Uhr - 10:00 Uhr
In diesem Modul lernst du alle Arbeitsschritte und Konzepte für die Vorbereitung der Daten für den Modeling-Prozess kennen. Zuerst analysierst du die Daten, indem du unterschiedliche Visualisierungstechniken anwendest, um Muster, Trends und Ausreißer zu erkennen. Danach bereinigst du die Daten und bereitest sie für die Transformation vor:
In diesem Modul lernst du alle Arbeitsschritte und Konzepte für die Vorbereitung der Daten für den Modeling-Prozess kennen. Zuerst analysierst du die Daten, indem du unterschiedliche Visualisierungstechniken anwendest, um Muster, Trends und Ausreißer zu erkennen. Danach bereinigst du die Daten und bereitest sie für die Transformation vor:
In diesem Modul lernst du alle Arbeitsschritte und Konzepte für die Vorbereitung der Daten für den Modeling-Prozess kennen. Zuerst analysierst du die Daten, indem du unterschiedliche Visualisierungstechniken anwendest, um Muster, Trends und Ausreißer zu erkennen. Danach bereinigst du die Daten und bereitest sie für die Transformation vor:
Im dritten Webinar widmest du dich zusammen mit dem Referenten vor allem dem Übungsprojekt. Ein möglicher Lösungsweg wird vorgestellt. Natürlich besteht auch hier wieder ausreichend Möglichkeit, Fragen zu stellen.
Montag, 17.11.2025
11:00 Uhr - 12:00 Uhr
Im dritten Webinar widmest du dich zusammen mit dem Referenten vor allem dem Übungsprojekt. Ein möglicher Lösungsweg wird vorgestellt. Natürlich besteht auch hier wieder ausreichend Möglichkeit, Fragen zu stellen.
Montag, 26.01.2026
09:00 Uhr - 10:00 Uhr
Im dritten Webinar widmest du dich zusammen mit dem Referenten vor allem dem Übungsprojekt. Ein möglicher Lösungsweg wird vorgestellt. Natürlich besteht auch hier wieder ausreichend Möglichkeit, Fragen zu stellen.
Montag, 11.05.2026
09:00 Uhr - 10:00 Uhr
Jetzt geht es an das Modeling auf Basis der Daten. Du lernst zuerst, wie du den passenden Algorithmus und die richtige Methodik findest, um optimale Ergebnisse zu erzielen. Im Anschluss daran fokussierst du dich darauf, wie man die Ergebnisse der Modelle adäquat bewertet und interpretiert. In Praxisübungen führst du die Prozesse selbst in KNIME aus und setzt dabei auch komplexere Klassifikations- und Clustering-Aufgaben um:
Jetzt geht es an das Modeling auf Basis der Daten. Du lernst zuerst, wie du den passenden Algorithmus und die richtige Methodik findest, um optimale Ergebnisse zu erzielen. Im Anschluss daran fokussierst du dich darauf, wie man die Ergebnisse der Modelle adäquat bewertet und interpretiert. In Praxisübungen führst du die Prozesse selbst in KNIME aus und setzt dabei auch komplexere Klassifikations- und Clustering-Aufgaben um:
Jetzt geht es an das Modeling auf Basis der Daten. Du lernst zuerst, wie du den passenden Algorithmus und die richtige Methodik findest, um optimale Ergebnisse zu erzielen. Im Anschluss daran fokussierst du dich darauf, wie man die Ergebnisse der Modelle adäquat bewertet und interpretiert. In Praxisübungen führst du die Prozesse selbst in KNIME aus und setzt dabei auch komplexere Klassifikations- und Clustering-Aufgaben um:
Das vierte Webinar nutzt du noch einmal für einen Deep-dive in die Modeling-Konzepte. Du wiederholst die wichtigsten Fakten über Algorithmen und Methodiken und setzt einen besonderen Fokus auf die Ergebnisbeurteilung der eingesetzten Modelle.
Montag, 12.01.2026
11:00 Uhr - 12:00 Uhr
Das vierte Webinar nutzt du noch einmal für einen Deep-dive in die Modeling-Konzepte. Du wiederholst die wichtigsten Fakten über Algorithmen und Methodiken und setzt einen besonderen Fokus auf die Ergebnisbeurteilung der eingesetzten Modelle.
Montag, 16.03.2026
09:00 Uhr - 10:00 Uhr
Das vierte Webinar nutzt du noch einmal für einen Deep-dive in die Modeling-Konzepte. Du wiederholst die wichtigsten Fakten über Algorithmen und Methodiken und setzt einen besonderen Fokus auf die Ergebnisbeurteilung der eingesetzten Modelle.
Montag, 06.07.2026
09:00 Uhr - 10:00 Uhr
In der vierten Selbstlernphase geht es an die letzten Schritte im CRISP-DM-Prozess, die Evaluation und das Deployment des Datenmodells. Auch hier gehst du Schritt für Schritt anhand von Anleitungen und eigenen Praxisaufgaben in KNIME vor. Am Ende bringst du den gesamten Prozess in Produktion und überführst ihn in einen automatisierten KNIME-Workflow:
In der vierten Selbstlernphase geht es an die letzten Schritte im CRISP-DM-Prozess, die Evaluation und das Deployment des Datenmodells. Auch hier gehst du Schritt für Schritt anhand von Anleitungen und eigenen Praxisaufgaben in KNIME vor. Am Ende bringst du den gesamten Prozess in Produktion und überführst ihn in einen automatisierten KNIME-Workflow:
In der vierten Selbstlernphase geht es an die letzten Schritte im CRISP-DM-Prozess, die Evaluation und das Deployment des Datenmodells. Auch hier gehst du Schritt für Schritt anhand von Anleitungen und eigenen Praxisaufgaben in KNIME vor. Am Ende bringst du den gesamten Prozess in Produktion und überführst ihn in einen automatisierten KNIME-Workflow:
Im abschließenden Webinar widmest du dich dem Übungsprojekt aus Modul 8. Neben Insights für Lösungswege zur Aufgabe bekommst du vom Referenten auch Tipps und Hinweise zur Vorbereitung auf die Abschlussprüfung.
Montag, 23.02.2026
11:00 Uhr - 12:00 Uhr
Im abschließenden Webinar widmest du dich dem Übungsprojekt aus Modul 8. Neben Insights für Lösungswege zur Aufgabe bekommst du vom Referenten auch Tipps und Hinweise zur Vorbereitung auf die Abschlussprüfung.
Montag, 04.05.2026
09:00 Uhr - 10:00 Uhr
Im abschließenden Webinar widmest du dich dem Übungsprojekt aus Modul 8. Neben Insights für Lösungswege zur Aufgabe bekommst du vom Referenten auch Tipps und Hinweise zur Vorbereitung auf die Abschlussprüfung.
Montag, 24.08.2026
09:00 Uhr - 10:00 Uhr
1. Business Understanding für die Datenanalyse
2. Bedienung und erste Schritte in KNIME
3. Data Understanding und Data Preparation
4. Data Modeling
5. Deployment, Überwachung und Fehlersuche
6. Abschlussprojekt
Nach den Praxisaufgaben, mit denen verschiedene Szenarien und die einzelnen Stufen des CRISP-DM-Prozesses eingeübt wurden, steht am Ende des Kurses ein Abschlussprojekt, in dem der ganze Datenanalyse-Prozess durchlaufen wird.
Dieser Kurs bietet dir ein digitales Blended-Konzept, das für berufsbegleitendes Lernen entwickelt wurde. Durch einen flexiblen Mix aus Online-Seminaren und Selbstlernphasen kommst du sicher ans Ziel. So lernst du in dieser Weiterbildung:
Lernumgebung: In deiner Online-Lernumgebung findest du nach deiner Anmeldung nützliche Informationen, Downloads und Extra-Services zu dieser Qualifizierungsmaßnahme.
Selbstlernphasen: Lerne selbstbestimmt, in deinem eigenen Tempo und wann immer du möchtest. Unsere Kurse bieten dir dafür didaktisch hochwertiges Lernmaterial.
Live-Webinare: In regelmäßigen Online-Seminaren triffst du deine Trainer:innen persönlich. Du erhältst Antworten auf deine Fragen, konkrete Hilfestellungen und Anleitungen, um dein Wissen zu vertiefen und die erworbenen Fähigkeiten in praktischen Übungen anzuwenden.
Lern-Community: Während des gesamten Kurses steht dir eine digitale Lern-Community zur Verfügung. Tausche dich mit anderen Teilnehmenden und den Trainer:innen aus und kläre Fragen.
Future Jobs Club: Erhalte exklusiven Zugang zu einem Business-Netzwerk, News und Future Work Hacks.
Teilnahmebestätigung und Open Badge: Als Absolvent:in des Kurses erhältst du eine Teilnahmebestätigung und ein Open Badge, das du u. a. auch ganz einfach in beruflichen Netzwerken (u. a. LinkedIn) teilen kannst.