Data Quality erfolgreich steuern
Bessere Datenqualität – bessere Managemententscheidungen
Inhalte
Einleitung und Definition
- Von den Daten zu Informationen zu Wettbewerbsfähigkeit.
- Definition von Datenqualität und Datenqualitätsmanagement (DQM).
- Warum DQM? – Treiber für die Einführung eines unternehmensweiten DQM.
- Mehrwert eines Data Quality Managements für Organisationen.
- DQM-Reifegradmodell (Wo würden Sie Ihr Unternehmen einordnen?).
Schlechte Datenqualität
- Anforderungen an die Datenqualität (gesetzlich/ökonomisch).
- Ursachen und Wirkung schlechter Datenqualität auf die Organisation als System.
- Auswirkung schlechter Datenqualität auf Kennzahlen.
- Datenqualitätsklassen und Untersuchungsgegenstände zur Erhebung schlechter Datenqualität.
Datenqualitätskriterien definieren und messen (Data Profiling)
- Überblick Datenqualitätsdimensionen zur optimalen Messung von Datenqualität.
- Datenqualitätsdimensionen definieren (praktische Übung).
- Datenqualitätsdimensionen anwenden (Praxisbeispiel).
Entwicklung von Logikbäumen zur Ermittlung und Bewertung von Ursache/Wirkung
- Prinzipien Logikbäume und Mehrwert.
- Logikbäume anwenden (praktische Übung).
- Bewertung der Erkenntnisse aus Logikbäumen.
Ableitung von Verbesserungsmaßnahmen und Analyse Kosten/Nutzen
- Logikbäume zur Entscheidungsfindung weiterentwickeln für eine optimale Kosten-/Nutzenbewertung (praktische Übung).
- Verbesserungsmaßnahmen ableiten (praktische Übung).
Aufbau eines Data Quality Reportings und Data Quality Index
- DQM-Regelkreis.
- Vom Prototyping zum DQ-Standardreporting.
- Entwicklung und Implementierung eines prozessorientierten DQ-Index.
Data Quality Organisation und Prozesse
- Rollen und Verantwortlichkeiten.
- Standardprozesse: Data Profiling, Data Quality Monitoring, Fehlertracking und Verbesserung.
- Einordnung Data Quality im Data Governance Modell.
Lernumgebung
Ihr Nutzen
- Sie sehen die Notwendigkeit zur Einführung eines Data Quality Managements aus gesetzlicher und ökonomischer Sicht.
- Sie lernen, wie Sie die Qualität Ihrer Daten zielorientiert und nachhaltig verbessern können.
- Sie erkennen, wie Chancen und Risiken von Datenqualität im Unternehmen ermittelt und bewertet werden können und welche Investitionen sich lohnen.
- Sie erfahren, wie Sie Datenqualitätskriterien definieren und messen können.
- Sie lernen, wie Sie Verbesserungsmaßnahmen im Datenmanagement mit entsprechenden Kosten-Nutzen-Analysen ableiten können.
- Sie erhalten einen Leitfaden, wie Sie Data Quality Management in Ihrem Unternehmen aufbauen und nachhaltig etablieren können.
Methoden
Praxisorientierter Vortrag, Praxisbeispiele, Diskussion, Leitfaden. Die Teilnehmer:innen können eigene aus ihrem Unternehmen bekannte Datenqualitäts-Fragestellungen einbringen
Teilnehmer:innenkreis
Data Quality Manager:innen, Fach- und Führungskräfte aus Controlling, Finanzen, Marketing, Datenqualitätsmanagement sowie alle Personen, die sich mit Digitalisierung und Datenanalyse beschäftigen.
Weitere Empfehlungen zu „Data Quality erfolgreich steuern“
Starttermine und Details


Montag, 03.07.2023
09:00 Uhr - 17:00 Uhr
Dienstag, 04.07.2023
09:00 Uhr - 17:00 Uhr
- ein gemeinsames Mittagessen pro vollem Seminartag,
- Pausenverpflegung und
- umfangreiche Arbeitsunterlagen.

Montag, 21.08.2023
09:00 Uhr - 17:00 Uhr
Dienstag, 22.08.2023
09:00 Uhr - 17:00 Uhr

Donnerstag, 09.11.2023
09:00 Uhr - 17:00 Uhr
Freitag, 10.11.2023
09:00 Uhr - 17:00 Uhr

Mittwoch, 13.03.2024
09:00 Uhr - 17:00 Uhr
Donnerstag, 14.03.2024
09:00 Uhr - 17:00 Uhr
- ein gemeinsames Mittagessen pro vollem Seminartag,
- Pausenverpflegung und
- umfangreiche Arbeitsunterlagen.