pds-it
['Produktdetailseite','nein']
Amazon Web Services / AWS Machine Learning & AI
Die Illustrationen sind in Kooperation von Menschen und künstlicher Intelligenz entstanden. Sie zeigen eine Zukunft, in der Technologie allgegenwärtig ist, aber der Mensch im Mittelpunkt bleibt.
KI-generierte Illustration

Advanced Generation AI Development on AWS

Online
3 Tage
English
PDF herunterladen
€ 1.990,–
zzgl. MwSt.
€ 2.368,10
inkl. MwSt.
Buchungsnummer
42551
Veranstaltungsort
Online
5 Events
€ 1.990,–
zzgl. MwSt.
€ 2.368,10
inkl. MwSt.
Buchungsnummer
42551
Veranstaltungsort
Online
5 Events
Werde zertifizierter
Machine Lerning Engineer
Dieser Kurs ist Bestandteil der zertifizierten Master Class "Machine Learning Engineer". Bei Buchung der gesamten Master Class sparst du über 15 Prozent im Vergleich zur Buchung dieses einzelnen Moduls.
Zur Master Class
Inhouse Training
Firmeninterne Weiterbildung nur für eure Mitarbeiter:innen - exklusiv und wirkungsvoll.
Anfragen
In Kooperation mit
This course is designed for developers seeking to master the implementation of production-ready generative AI solutions on AWS.
Inhalte

The course addresses the needs of organizations embarking on their generative AI journey and how to build comprehensive generative AI strategies that align with broader business objectives.

In the course, you will build expertise across the entire generative AI stack - from foundation models to enterprise integration patterns. In addition, you will learn about advanced data processing techniques, vector database implementation and retrieval augmentation, sophisticated prompt engineering and governance, ag2entic AI systems and tool integration, AI safety and security measures, performance optimization and cost management strategies, comprehensive monitoring and observability solutions, testing and validation frameworks.

The course structure follows AWS's proven model for generative AI adoption, progressing from experimentation to production-ready implementations.

 

Day 1
Module 1: Foundation Model Selection and Configuration

  • Enterprise foundation model evaluation framework
  • Dynamic model selection architecture patterns
  • Resilient foundation model system designs
  • Cost optimization and economic modeling

 

Module 2: Advanced Data Processing for Foundation Models

  • Comprehensive data validation and quality assurance
  • Multi-modal data processing pipelines
  • Input optimization and performance enhancement

 

Module 3: Vector Databases and Retrieval Augmentation

  • Enterprise vector database architecture
  • Advanced document processing and chunking strategies
  • Sophisticated retrieval system implementation
  • Hands-on Lab: Develop Retrieval-Augmented Generation (RAG) Applications with Amazon Bedrock Knowledge Bases

 

Day 2
Module 4: Prompt Engineering and Governance

  • Advanced prompt engineering frameworks
  • Complex prompt orchestration systems
  • Enterprise prompt governance and management
  • Hands-on Lab: Develop conversation pattern with Amazon Bedrock APIs

 

Module 5: Agentic AI and Tool Integration

  • Agentic AI architecture and evolution
  • Amazon Bedrock Agents implementation
  • AWS Agentic AI service ecosystem
  • Tool integration and production observability

 

Module 6: AI Safety and Security

  • Comprehensive content safety implementation
  • Privacy-preserving AI architecture
  • AI governance and compliance frameworks

 

Day 3
Module 7: Performance Optimization and Cost Management

  • Token efficiency and cost optimization
  • High-performance system architecture
  • Intelligent caching systems implementation
  • Hands-on Lab: Building Secure and Responsible Gen AI with Guardrails for Amazon Bedrock

 

Module 8: Monitoring and Observability for Generative AI

  • Foundation model monitoring systems
  • Business impact and value management
  • AI-specific troubleshooting and diagnostics

 

Module 9: Testing, Validation, and Continuous Improvement

  • Comprehensive AI evaluation frameworks
  • Quality assurance and continuous improvement
  • RAG system evaluation and optimization

 

Module 10: Enterprise Integration Patterns

  • Enterprise connectivity and integration architecture
  • Secure access and identity management
  • Cross-environment and hybrid deployments

 

Module 11: Course wrap-up

  • Next steps and additional resources
  • Course summary
Lernumgebung
Benefits
  • Developing production-ready generative AI solutions using AWS services that meet enterprise requirements for security, scalability, and reliability
  • Evaluating and selecting appropriate foundation models for specific business use cases, including benchmarking performance and implementing dynamic model selection architectures
  • Designing and implementing resilient foundation model systems with circuit breakers, cross-region deployment, and graceful degradation strategies
  • Building comprehensive data processing pipelines for multi-modal inputs, including validation workflows and optimization techniques
  • Implementing sophisticated vector database solutions using Amazon Bedrock Knowledge Bases, OpenSearch, and hybrid approaches for effective retrieval augmentation
  • Creating and managing advanced prompt engineering frameworks, including chain-of-thought reasoning and enterprise-wide prompt governance systems
  • Developing autonomous AI agents using Amazon Bedrock Agents, implementing complex reasoning patterns and tool integration capabilities
  • Implementing comprehensive AI safety and security controls, including content filtering, privacy preservation, and adversarial testing mechanisms
  • Optimizing performance and manage costs through token efficiency strategies, batching implementations, and intelligent caching systems
  • Designing and implementing comprehensive monitoring and observability solutions for foundation model applications
  • Creating systematic testing and validation frameworks for continuous quality assurance of AI applications
  • Integrating generative AI solutions within enterprise environments using secure, compliant, and scalable architectural patterns
Instructor
Vladimir Sabo
Methods

This course includes presentations, hands-on labs, demonstrations, and group exercises.

Abschlussprüfung
Recommended for
  • Software developers
  • Technical professionals
Starttermine und Details

Lernform

Learning form

9.3.2026
Online
Plätze frei
Durchführung gesichert
Online
Plätze frei
Durchführung gesichert
20.4.2026
Online
Plätze frei
Durchführung gesichert
Online
Plätze frei
Durchführung gesichert
22.6.2026
Online
Plätze frei
Durchführung gesichert
Online
Plätze frei
Durchführung gesichert
21.9.2026
Online
Plätze frei
Durchführung gesichert
Online
Plätze frei
Durchführung gesichert
23.11.2026
Online
Plätze frei
Durchführung gesichert
Online
Plätze frei
Durchführung gesichert

The training is carried out in cooperation with an authorized training partner. For the purpose of implementation, participant data will be transferred to the training partner and the training partner assumes responsibility for the processing of these data. Please take note of the corresponding privacy policy.

No items found.
No items found.
*Pflichtfelder

Du hast Fragen zum Training?

Ruf uns an unter +49 761 595 33900 oder schreib uns auf service@haufe-akademie.de oder nutze das Kontaktformular.

Die Illustrationen sind in Kooperation von Menschen und künstlicher Intelligenz entstanden. Sie zeigen eine Zukunft, in der Technologie allgegenwärtig ist, aber der Mensch im Mittelpunkt bleibt.
KI-generierte Illustration